Wireless RF Audio System

Group: May1730

Advisor : Prof. Gary Tuttle

Client : Dr. Louis Bannit

Introduction

Problem Statement

- To build a high clarity wireless speaker system.
- Should give optimum sound clarity for a large room
- Large variance of hearing needs
 - By bringing the speakers closer to the audience, we can fix many of these issues

Functional Requirements

- Provide clear audio signal from a transmitter to receiver device via radio frequency.
- Customizable transmission frequency to avoid noise
- Multiple speaker output to accommodate larger venues.

Clarity of Audio

- Need a working definition to guide our work
- Three main concerns
 - Background Noise
 - Interfering Signal
 - Feedback

Non-functional Requirements

- Ease of use.
- Stand alone speaker system.
- Minimal delay in data transmission.
- Scalable to match size of audience

Constraints and Considerations

- Synchronized input and output
- We are only given a year to complete the project
- We want our solution to be as cheap as possible

Potential Risk & Mitigation

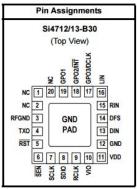
- Frequency wave may be interfering with other devices
- Lag between speakers
- Conversions from digital to analog

Conceptual Sketch

Initial Ideas

- Infrared
 - Needs a physical line of sight
- Bluetooth
 - \circ Synchronization issues, latency times
- Wifi
 - \circ Synchronization issues,

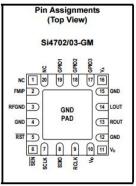
Initial Materials


- Texas Instruments Launchpad
- GNURadio

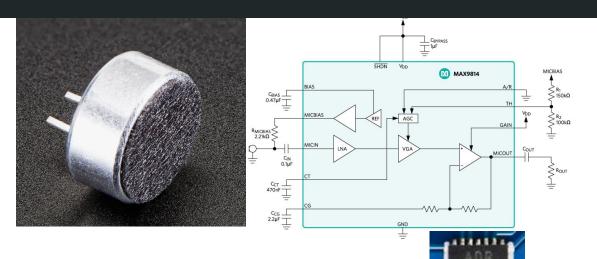
Hardware Specifications

Transmitter

- Take audio signal from the microphone and convert to a digital signal
- Silicon Labs Si4713 Chip
- 88-108MHz
- FM Band Scan for clarity
- Arduino Friendly



Receiver

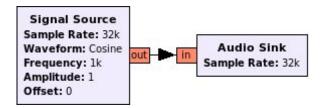

- Receive a clear radio transmission from FM band
- Silicon Labs Si4703 Chip
- RDS available (Radio Data Service)
- Arduino Friendly
- Output/Antenna option

Hardware Input

- Electret Microphone
- MAX9814 Amplifier

Microcontroller

- Arduino Uno
- Atmega 328 Chip
- Analog in and Digital out


28 PC5 (ADC5/SCL/PCINT13) (PCINT14/RESET) PC6 27 PC4 (ADC4/SDA/PCINT12) (PCINT16/RXD) PD0 2 (PCINT17/TXD) PD1 C 3 26 PC3 (ADC3/PCINT11) (PCINT18/INT0) PD2 4 25 C PC2 (ADC2/PCINT10) 24 PC1 (ADC1/PCINT9) (PCINT19/OC2B/INT1) PD3 23 PC0 (ADC0/PCINT8) (PCINT20/XCK/T0) PD4 6 VCC 22 GND GND 21 AREF (PCINT6/XTAL1/TOSC1) PB6 0 9 20 AVCC (PCINT7/XTAL2/TOSC2) PB7 C 10 19 PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 0 11 18 PB4 (MISO/PCINT4) (PCINT22/OC0A/AIN0) PD6 12 17 PB3 (MOSI/OC2A/PCINT3) 16 PB2 (SS/OC1B/PCINT2) (PCINT23/AIN1) PD7 13 (PCINT0/CLKO/ICP1) PB0 14 15 PB1 (OC1A/PCINT1)

Software Specifications

GNURadio

- Analog to Digital
- Flow Graphs
- Sinks and Sources
- Modular Creation
- C++/Python

Moving Away From GNURadio

- Large library of dependencies
- Latency during transmission
- Moving from Linux to Arduino

Arduino Software Requirements

Transmission side:

- Run on the Arduino controller.
- Use I2C to communicate, arduino provides libraries via github.
- First implementation will be to set stations in software.

Deliverables:

- Text/data transmission
- Ability to tune many frequencies, and scan available frequencies to find most available.
- Output important data to screen(transmission data/set frequency)

Software Requirements(continued)

Receiver Deliverables:

- Volume control
- Tuning control
- Read current channel
- Seek to find frequencies that are transmitting

Conclusions

Project Outcomes

- Created a speaker system that works wirelessly via radio frequencies
- Scanning Feature for choosing clearest frequency
- LCD Screen for display of output
- Able to change volume and channel via button presses
- Near autonomous setup

Future Goals

- Build speakers with hardware installed
 - Move away from a breadboard implementation
- Ability to choose different transmissions in the area
 - Potential of having multiple different systems in a building
- Completely autonomous setup

THANK YOU